How Brain Circuits Adapt to Changes in Sensory Experience
نویسنده
چکیده
The cerebral cortex, the outer portion of the brain, consists of a layered structure of neural tissue that contains the cell bodies of neurons and plays a key role in perception and cognition. Although cortical circuits throughout the brain share similarities, the patterns of connections among neurons in different brain regions can vary widely. Yet, relatively little is known about how region-specific wiring patterns relate to information processing in the brain. In a study published in PLOS Biology, Dennis Kätzel and Gero Miesenböck of the University of Oxford investigated how wiring patterns in the brains of adult mice adapt to changes in sensory input. They found that distinct connections in neural networks responded in different ways to sensory changes, allowing neurons to continue to function optimally. The findings reveal a remarkable level of adaptability in cortical circuits of the adult brain. To examine how brain circuits adapt to changes in sensory experience, the researchers used optogenetic mapping, a technique that combines genetics and optics to precisely control the activity of individual neurons. Kätzel and Miesenböck inserted channelrhodopsin, a lightsensitive receptor protein originally found in algae, into neurons, making them sensitive to activation by light of specific wavelengths. This allowed them to control the activity of these neurons and study their wiring patterns and function. The researchers first examined how neural circuits would change in response to sensory deprivation. They trimmed the whiskers of adult mice to deprive the animals of tactile sensation for two to three weeks, and then prepared slices from barrel cortex, a brain region involved in processing tactile information from the whiskers. The researchers stimulated neurons in barrel cortex and then recorded lightevoked neural activity to map out neuronal connections. They found that sensory deprivation caused an overall reduction in inhibitory neural activity in cortical circuits, consistent with previous findings in brain regions that process visual information. But this new study paints a more refined picture. Different neuronal connections responded in different ways to sensory deprivation. Neurons in layer 5 of barrel cortex stopped sending inhibitory signals to neurons in layer 2/3, making layer 2/3 neurons more excitable. This change may be an autoregulatory adaptation, because the lack of tactile signals from the whiskers had caused a sharp decrease in excitatory neural activity in barrel cortex. The release from inhibition could prevent a total shutdown of neural function, allowing neurons in layer 2/3 to continue to process even weak tactile signals in the wake of sensory deprivation. On the other hand, neurons in layer 1 sent more inhibitory signals to neurons in layer 2/3 in response to sensory deprivation. Because layer 1 neurons carry information from higher brain regions involved in complex perceptual and cognitive processes, this adaptation could reflect top-down suppression of unusual activity in layer 2/3 neurons, which were no longer responding normally after sensory deprivation. Moreover, these changes in cortical wiring patterns were entirely reversible. In a different experiment, the researchers trimmed the whiskers of adult mice for several weeks and then allowed the whiskers to regrow for four to five weeks before preparing the brain slices. The return to normal sensory stimulation restored the original level of inhibitory signals from neurons in layers 1 and 5 to neurons in layer 2/3. This finding suggests that changes in sensory stimulation do not destroy the underlying physical structure of neuronal connections, but rather modify the patterns of communication between neurons in cortical circuits. Taken together, the findings suggest that specific neuronal connections can respond in independent and sometimes opposite ways to changes in sensory input. Surprisingly, these reversible changes occur in adulthood, well past the time window during which neuronal connections are thought to adapt to environmental fluctuations. The ability of wiring motifs to change in sophisticated ways could reflect a self-regulating mechanism that ensures optimal neural function in cortical circuits despite changes in sensory experience.
منابع مشابه
Effect of Norepinephrine depletion on induction of experience dependent plasticity in male rat barrel cortex
Introduction: Barrel cortex of rats is a part of somatosensory cortex, which receives information from facial whiskers. Vibrisectomy by sensory deprivation leads to some changes in the barrel cortex, which have been known as experience dependent plasticity. On the other hand, Norepinephrine (NE) and locus coeruleus, which is the main source of NE, influenced response properties of cortical bar...
متن کاملO2: Neuroscience and Talent: How Neuroscience Can Enhance Successful Plan of Talent Strategy
Performance and development are based on hard work, experience and learning. Learning how to change different behaviors is crucial to successful talent management plans. Within the brain there are complex connected circuits that can identify threats. The brain reacts to change as a threat. There is also a collection of brain structures tied to a natural reward system that are involved in the re...
متن کاملUnbiased, High-Throughput Electron Microscopy Analysis of Experience-Dependent Synaptic Changes in the Neocortex.
UNLABELLED Neocortical circuits can be altered by sensory and motor experience, with experimental evidence supporting both anatomical and electrophysiological changes in synaptic properties. Previous studies have focused on changes in specific neurons or pathways-for example, the thalamocortical circuitry, layer 4-3 (L4-L3) synapses, or in the apical dendrites of L5 neurons- but a broad-scale a...
متن کاملExperience-dependent plasticity of layer 2/3 circuits in developing somatosensory neocortex
Experience-dependent plasticity is the adaptability of brain circuits as a result of changes in neural activity, a phenomenon that has been proposed as the neural basis for important brain function in health and disease. The underlying mechanisms of experience-dependent plasticity can take different forms, depending on the organisms and brain areas under investigation. A better understanding of...
متن کاملSensory Experience in Development Balances Excitation and Inhibition to Stabilize Frequency Tuning in Central Auditory Neurons.
The balance between excitation and inhibition is critical in shaping receptive field tuning properties in sensory neurons and, ultimately, in determining how sensory cues are extracted, transformed and interpreted by brain circuits. New findings suggest that developmentally-regulated, experience-dependent changes in intracortical inhibitory networks are key to defining receptive field tuning pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 12 شماره
صفحات -
تاریخ انتشار 2014